Viscosity Characteristics of Long-Chain **Phosphorus Compounds**

DANIEL SWERN, W. E. PALM, RICHARD SASIN, and L. P. WITNAUER Eastern Regional Research Laboratory, Philadelphia 18, Pa.

 $\mathbf{P}_{ ext{HOSPHORUS-CONTAINING organic compounds are}}$ important additives for lubricants. Patents are the main source of information about such additives probably because most of them are ill-defined reaction products of organic compounds with various reactive inorganic phosphorus compounds.

A broad program on the synthesis and evaluation of pure. well characterized, long-chain phosphorus-containing compounds of various structural types was initiated in this laboratory in 1954. Methods of preparation, physical and chemical characteristics (1, 3), and evaluation of these materials as plasticizers (3, 5) and lubricity additives (2) have been published. The determination of the viscosity over a range of temperatures $(+98^{\circ} \text{ to } -60^{\circ} \text{ C})$, whenever possible), the viscosity index (V.I.) and ASTM slope, and the pour or freezing point of these substances with the object of correlating structure with these properties are presented here.

Five general classes of long-chain phosphorus compounds were examined. These were dialkyl acyloxyalkyl phosphates (I), dialkyl acyloxyalkylphosphonates (II), P,P-dialkylphosphono esters (III), dialkyl 11-phosphonoundecanoates (IV), and P,P-dialkyl 9(10)-phosphonostearates (V).

The specific compounds studied and the controls are listed in Table I.

Structural similarities and differences among these five classes of compounds are worth noting here. I, II, and III have the phosphorus-containing and carboxyl ester groups relatively close together; in IV and V these groups are widely separated. In III, the polar groups are not only close together, but a long-chain branch (C_4 , C_{10} , or C_{16}) is symmetrically placed between them. V is similar to III, and in many cases the compounds are positional isomers, but in V the long-chain branch (C_8 or C_9) is adjacent to the phosphonate and distant from the carboxyl ester group. I, II, and IV are more nearly linear; III and V are more highly branched. None of the compounds described in this paper is strictly linear, because of the two pendant groups on phosphorus; in some cases \mathbf{R}' in the carboxyl ester is also branched.

Viscosity characteristics were determined by physical test methods used in an earlier report (4). Stiffness or Clash-Berg temperatures listed in Table I have been taken from earlier publications (3, 5). These temperatures were obtained on compositions containing 34 to 35% by weight of the listed compound and 65% by weight of poly(vinyl chlorideacetate) copolymer (95 to 5) (VYDR) (4, 5). They are the temperatures at which these compositions have an apparent modulus of elasticity of 135,000 p.s.i. As in a previous study (4), there has been an attempt to correlate viscosity at low temperatures with low stiffness temperatures in plasticized poly (vinyl chloride).

RESULTS AND DISCUSSION

 ${\bf Class \, I. \,\, Dialkyl \, acyloxyalkyl \, phosphates \, are \, characterized}$ by a high V.I., usually above 150 and in one case as high as 180 (compound 4, Table I). The pour or freezing points of this class, however, are relatively high; in no case is a value below -37° C. obtained (compounds 2 and 4). No correlation can be made between their viscosity at low

	Table I. Viscosity Characteristics of Long-Chain Phosphorus Compounds and Controls	r Charac	teristics o	of Long-(Chain Phos	phorus Co	spunoduc	and Cor	itrols			
			Kin	ematic V	Kinematic Viscosity, Centistokes at ° C.	ntistokes 2	ıt∘C.		A S.T.M.		Pour	Stiff- ness Temn °
	Phosphorus Compounds	98.6	38	10	-10	- 30	-50	-60	Slope	V.I.	U.	.C
					D	ialkyl Acyl	Dialkyl Acyloxyalkyl Phosphates (I)	hosphate	s (I)			
-	Diethyl lauroyloxyethyl phosphate	1.91	5.22	÷	:	•		:	0.70	158	7	e.
2	Diethyl oleoyloxyethyl phosphate	2.72	8.39	20.9	31.2(0°)*	:		:	0.68	160	-37	٩
n	Diethyl oleoyloxypropyl phosphate	4.61	19.8'	:	:	:	:	:	0.67	167	:	-67
4	Diethyl oleoyloxybutyl phosphate	4.56	18.3	55.8	4	:		:	0.65	180	-37	-54
c,	Dibutyl lauroyloxypropyl phosphate	2.97	10.7	4	:	÷	÷	:	0.72	149	-28	-53
					Dia	lkyl Acylo	Dialkyl Acyloxyalkyl Phosphonates (II)	osphonate	s (II)			
9	Dibutyl lauroyloxyethyl phosphonate	2.98	11.2	33.9	110 - 112'	÷		:	0.73	138	- 13'	-52
-	Dibutyl lauroyloxypropyl phosphonate	3.89	17.1	57.5	100	910	:	:	0.75	143	-31	-48
œ	Dihexyl lauroyloxyethyl phosphonate	3.50	13.9	42.8	132	÷	:	÷	0.70	151	- 16	-53
						Dialkyl Pl	Dialkyl Phosphono Esters (III)	Sters (III	(
6	Triethyl phosphonostearate	3.85	18.3	69.2	ę	:	:	:	0.71	118	-1,	-37
10	Tributyl phosphonolaurate	2.92	12.2	40.5	133	610	4,660	27,600	0.76	66	-69	-43
Π	Trihexyl phosphonocaproate	1.84	5.86	15.7	40.4	145	835	3,170	0.81	115	$< -74^{\mu}$	-55
12	Butyl P, P-diethyl phosphonolaurate	2.57	10.5	34.1	117	595	7,880	;	0.79	76	69-	-45
<u>2</u>	Butyl P.P-diethyl phosphonostearate	4.08	18.8	56.3	4	÷		:	0.70	138	-15°	-33
14	2-Ethylhexyl P , P -diethylphosphonostearate	4.26	20.2	92.0	Ą	:	•	÷	0.72	138	-18°	-41
12	Ethyl P.P-dihexyl phosphonolaurate	3.25	13.8	:	161	815	9,720	:	0.79	111	70	-47
16	Phenyl P, P -diethyl phosphonostearate	4.40	21.8	÷	:	:	:	:	0.72	129	7	q

۰.

temperatures and the stiffness temperatures of poly(vinyl chloride) compositions containing them, because not enough of these compounds are compatible.

Diethyl oleoyloxypropyl phosphate (compound 3) is unusual in having equaled the lowest stiffness temperature we have observed in evaluating hundreds of compounds as plasticizers at the 35% level in poly(vinyl chloride).

Class II. Only three members of the dialkyl acyloxyalkylphosphonates were available (compounds 6, 7, 8); conclusions, therefore, are tentative. The V.I. is relatively high and in the range of bis(2-ethylhexyl) sebacate—values of the control obtained in this laboratory at different times range from 145 to 155. Freezing points are also relatively high. The three compounds are efficient low temperature plasticizers and, as anticipated, the viscosity of these compounds at -10° C. is low—100 to 132 centistokes.

Class III. No unusually high V.I. is observed with the P,P-dialkyl phosphono esters (compounds 9 to 16); the range is 76 to 138. Several pour points are strikingly low—notably those of trihexyl phosphonocaproate, below -74° C.

	-		_							_															
- 39	-43	-43	-45	-50		-45	-47	-49	2 8 - 3	-44	-43	-24		-31	-38	-46	-48	Ĭ	-41 _45	-41	50	- 199 - 190	-28		$OR OR O \\ \downarrow \\ O \leftarrow P - O - (CH_2)_m - O - C - R'$
-20	-25°	-44	- 35'	- 56		-41	-65	-61	-68	-56	-15			-55	-61	-64	-52	Ş	- 1 1 1 1 1 1 1 1	-56	-67	12->	-37		OR (I) Dialkyl acyloxyalkyl phosphates
140	142	148	170	138		148	146	148	143	169	152			116	141	149	140	159	135	132	145	5 2	13	n	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
0.75	0.71	0.71	0.65	0.73		0 71	0.69	0.65	0.79	0.67	0.71	0.65	()	0.71	0.68	0.58	0.62	0.70	0.67	0.70	17.0	0.80	0.86	loride	
:	:	••••										:	stearates (:	:		40,000 45,000-	40,000		01 300	11.400		ly(vinyl ch	
:	:		ę	39,000			17.800	60,900	12.500	(00-40)	(or) oo	:	Phosphono	52,500	19,300	12,800	28,000	8,000	10 460	26,700	ntrols 4 220	2.400	· · ·	eight of po ata.	$OR \qquad OIR \qquad O \\ O-P \\ OR \qquad OR \qquad O \\ OR \qquad OIR \qquad OIR \qquad OIR \qquad OIR \qquad OIR \qquad OIR \\ OR \qquad OIR \qquad OIR \qquad OIR \\ O$
	4	250(-20°)	860	2.840		q	1.470	4.950	1.020	960 2		¢	alkyl 9(10)-	2,630	1,390	1,250	2,580	920	965	2,010	C0 550	340	14,100	l 65% by w complete d	(II) Dialkyl acyloxyalkylphosphonates R = n-butyl or <i>n</i> -hexyl
	71.3	108	193	432	perature	86.0	177	800	142	198		393	$P, P-D_{i}$	543	281	282	476	203	199	349	811	72.0	1050	sticizer and to obtain ing bath.	m = 2 or 3
30.5	:	37.5	65.2	115	m ten	30.2	80.1	195	58.5	6.09	78.0	95.0		106	78.4	86.1	128	61.0	60.7	94.8	0 70	2.16	163 1	of plas ailable ed.	
10.3	60.6	13.2	20.2	30.5	alline at ro	11.0	22.4	39.6	17.4	18.7	24.3	25.1		25.5	21.9	25.2	32.8	19.9	18.7	25.7	196	12.U 8.13	29.9	6 by weight no longer av sults obtain mperature o	$ \begin{array}{c} $
2.84	2.64	3.37	4.74	5.74	Crvst	3.01	4.70	7.59	3.93	4.44	5.12	4.87		4.71	4.56	5.21	6.14	4.40	4.04	4.96	3.96	2.22	4.22	to 35% aterial a ratic re west te	OR (III)
				canoate		oate	oundecanoate	oundecanoate	ndecanoate	indecanoate	anoate	noate					arate	arate	arate	honostearate				ositions containing 34. r. ⁶ Err polymers. ⁶ Lo	P,P-Dialkyl phosphono esters R = ethyl, n-butyl or n-hexyl R' = ethyl, n-butyl, n-hexyl, 2-ethylhexyl, or phenyl n = 3, 9, or 15
17 Trimethyl 11-phosphonoundecanoate							_		•••					-	-						Bio(9 other/howed) achocoto (DOG)	Dis(2-etinyinexyi) sevacate (LUUU) Tric(2-ethvlhervl) nhosnhate (TOP)	Bis(2-ethylhexyl) phthalate (DOP)	^a Temperatures were obtained on comp acetate) copolymer (VYDR) 95:5. ^b Crystallized in capillary of viscometer ^c Freezing point. ^d Incompatible at the 35% level with co	$\begin{array}{rcrc} & OR & O \\ & & & \\ O \leftarrow P - (CH_2)_{10} - C - O - R \\ & OR \end{array}$ $\begin{array}{rcrc} (IV) \\ P, P - Dialkyl \\ 11 - phosphonoundecanoates \\ R &= methyl, ethyl, n-butyl, \\ n-hexyl, 2 - ethylhexyl, \\ or n - dodecyl \\ R' &= methyl, ethyl, n-butyl, \\ n-hexyl, 2 - ethylhexyl, \\ n - hexyl, 0 - phenyl \end{array}$
	te 2.84 10.3 30.5 51.0(0°) 0.75 140 -20'	Trimethyl 11-phosphonoundecanoate $2.84 ext{ 10.3 } 30.5 ext{ 51.0}(0^{\circ})$ $\dots ext{ 0.75 } 140 ext{ -20}^{\circ}$ Triethyl 11-phosphonoundecanoate $2.64 ext{ 9.09 } \dots ext{ 71.3 } ext{ 0.71 } 1.2 ext{ -25}^{\circ}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\label{eq:Trinethyl11-phosphonoundecanoate} Trinethyl11-phosphonoundecanoate} 2.84 10.3 30.5 51.0(0^{\circ}) \dots 0.75 140 -20^{\circ} Trinethyl11-phosphonoundecanoate} 2.64 9.09 \dots 71.3 b \dots 0.71 142 -25^{\circ} Trinethyl11-phosphonoundecanoate} 3.37 13.2 37.5 108 250(-20^{\circ}) \dots 0.71 148 -44^{\circ} Trinexyl11-phosphonoundecanoate} 4.74 20.2 65.2 193 860 b \dots 0.65 170 -35^{\circ} Trinexyl11-phosphonoundecanoate} 2.5 170 -35^{\circ} Trinexyl11-phosphonoundecanoate} 2.5 170 170 170 170 170 170 170 170 170 170$	$\label{eq:Trinethyl11-phosphonoundecanoate} Trinethyl11-phosphonoundecanoate} 2.84 10.3 30.5 51.0(0^\circ) \dots 0.75 140 -20^\circ Trinethyl11-phosphonoundecanoate 2.64 9.09 \dots 71.3 b \dots 0.71 142 -25^\circ Tributyl11-phosphonoundecanoate 3.37 13.2 37.5 108 250(-20^\circ) \dots 0.71 148 -44^\circ Trihexyl11-phosphonoundecanoate 4.74 20.2 65.2 193 860 b \dots 0.73 138 -55^\circ Tris(2-ethylhexyl)11-phosphonoundecanoate 5.74 30.5 115 432 2.840 39.000 \dots 0.73 138 -56^\circ$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\label{eq:relation} \mbox{Trimethyl II-phosphonounderanoate} \\ \mbox{Trimethyl P-bisi2-ethylhexyl phosphonounderanoate} \\ \mbox{Trimethyl P-bisi2-ethylhexyl phosphonounderanoate} \\ \mbox{Trimothyl P-bisi2-ethylhexyl phosphonounderanoate} \\ \mbox{Trimethyl PID-pisi2-ethylhexyl phosphonounderanoate} \\ \mbox{Trimethyl II-phosphonounderanoate} \\ \mbox{Trimethyl III-phosphonounderanoate} \\ \mbox{Trimethyl IIII-phosphonounderanoate} \\ \mbox{Trimethyl IIII-phosphonounderanoate} \\ \mbox{Trimethyl III-phosphonounderanoate} \\ \mbox{Trimethyl III-phosphonounderanoate} \\ \mbox{Trimethyl IIII-phosphonounderanoate} \\ \mbox{Trimethyl IIII-phosphonounderanoate} \\ \mbox{Trimethyl IIII-phosphonounderanoate} \\ \mbox{Trimethyl IIIII-phosphonousterante} \\$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$														

$$CH_3$$

$$| OR (CH_2)_m O$$

$$| I | I$$

$$O \leftarrow P - CH - (CH_2)_n - C - O - R'$$

$$| OR$$

(V) P,P-dialkyl 9(10)-phosphonstearates R and/or R' = methyl, ethyl, n-butyl, or 2-ethylhexyl m = 8 and n = 7 or m = 7 and n = 8

(compound 11); ethyl P,P-dihexyl phosphonolaurate, -70° C. (compound 15); tributyl phosphonolaurate, -69° C. (compound 10); and butyl P,P-diethyl phosphonolaurate, -60° C. (compound 12). This is to be expected as this class and V are the most highly branched. Trihexyl phosphonocaproate (compound 11) has an unusually low viscosity, even at -60° C.

Many of the dialkyl α -phosphonates have a low viscosity at -10° C.-40 to 160 centistokes—and they are also efficient low temperature plasticizers. As indicated earlier (4), a low viscosity at -10° C.—preferably 250 centistokes or less—still appears to be a prerequisite in most cases for an efficient low temperature plasticizer. The compounds with the lowest viscosity at -10° C., however, do not necessarily have the best low temperature characteristics. A low viscosity is only one desirable property, if an efficient low temperature plasticizer for poly(vinyl chloride) is to be obtained.

Class IV. There was particular interest in the dialkyl phosphonoundecanoates and P,P-dialkyl 9(10)-phosphonostearates because they are so similar structurally to compounds which are extremely useful as synthetic lubricants and as other functional fluids. This class of compounds closely resembles diesters of dibasic acids except that one of the carboxyl ester groups is replaced by a phosphonate group.

The V.I. of this class is generally high, equaling or exceeding that of conventional diesters in most cases. Members of this class with the highest V.I., in descending order, are trihexyl 11-phosphonoundecanoate, 170 (compound 20); 2-ethylhexyl P,P-dibutyl phosphonoundecanoate, 169 (compound 27); dodecyl P,P-dibutyl phosphonoundecanoate, 152 (compound 28); tributyl 11-phosphonoundecanoate, ethyl P,P-dibutyl phosphonoundecanoate, and butyl P,P-bis(2-ethylhexyl) phosphonoundecanoate, 148 (compounds 19, 23, 25); ethyl P,P-bis(2-ethylhexyl) 11-phosphonoundecanoate, 146 (compound 24); and 2-ethylhexyl P,P-diethyl phosphonoundecanoate, 143 (compound 26).

In addition to a high V.I., some of these compounds also have a low pour point. The members of this class with the best combination of V.I. and pour point are compounds 24, 25, 26, 27 (pour points of -65° , -61° , -68° , and -56° C. coupled with V.I. of 146, 148, 143, and 169, respectively).

Tentatively it can be concluded that the 2-ethylhexyl group is desirable in order to obtain this good combination of properties. Mixed phosphonoundecanoates, as expected, have lower pour or freezing points than the symmetical ones with the exception of dodecyl P,P-dibutyl phosphonoundecanoate (compound 28) and phenyl P,P-dibutyl phosphonoundecanoate (compound 29). These two compounds, as well as the trimethyl and triethyl 11-phosphonoundecanoates (compounds 17, 18) have relatively high freezing points.

Most of the dialkyl 11-phosphonoundecanoates impart low stiffness temperatures to poly(vinyl chloride) and, with the exception of compounds 21 and 25, they are also characterized by a low viscosity at -10° C. of 50 to 200 centistokes. Tris(2-ethylhexyl) 11-phosphonoundecanoate (compound 21) and butyl *P*,*P*-bis(2-ethylhexyl) 11-phosphonoundecanoate (compound 25) have a higher viscosity at -10° C., 430 and 800 centistokes, respectively; but in spite of this they are the two most efficient members of this class as low temperature plasticizers. This apparent anomaly emphasizes the danger of selecting a single physical property and of overgeneralizing the relationship between it and an evaluation which is the resultant of many complex phenomena operating simultaneously.

Class V. The V.I. of the P,P-dialkyl 9(10)-phosphonostearates is not unusual, but two members have a high V.I., in the range of that of diesters of dibasic acids. These are ethyl P,P-dibutyl phosphonostearate (compound 34) of V.I. 152 and tributyl 9(10)-phosphonostearate (compound 32) of V.I. 149.

More important, however, is that all members of this class have low pour points in the narrow range of -52° to -64° C. The dialkyl α -phosphonates, on the other hand, display a wide range of pour or freezing points from $+7^{\circ}$ to below -74° C., although they have the same number of branches as the 9(10)-series. The wide range appears to be related in a general way to the length, rather than to the position of the alkyl branch. In the *P*,*P*-dialkyl phosphonates, the alkyl branch is C₄, C₁₀, or C₁₆. In the first case (C₄ branch), the pour point of the phosphonate is below -74° C.; in the second case, the pour point is about -69° C.; and in the last case, the pour points are from $+7^{\circ}$ to -18° C. In the 9(10)-series, the branch is of relatively constant length (either C₈ or C₉) and the pour points do not vary much.

LITERATURE CITED

- Knight, H.B., Witnauer, L.P., Palm, W.E., Koos, R.E., Swern, D., J. Am. Oil Chemists' Soc. 36, 382 (1959).
- (2) Peale, L., Messina, J., Ackerman, B., Sasin, R., Swern, D., accepted for Am. Soc. Lubrication Engrs. Trans. 3, No. 1 (1960).
- (3) Swern, D., Palm, W.E., Ackerman, B., Witnauer, L.P., IND. ENG. CHEM., CHEM. ENG. DATA SER. 3, 346 (1958).
- (4) Swern, D., Palm, W.E., Knight, H.B., Witnauer, L.P., J. CHEM. ENG. DATA 5, 231 (1960).
- (5) Swern, D., Palm, W.E., Sasin, R., Witnauer, L.P., *Ibid.*, 5, 484 (1960).

RECEIVED for review June 8, 1959. Accepted April 21, 1960. Division of Petroleum Chemistry, 137th Meeting, ACS, Cleveland, Ohio, April 1960. Paper IX in the series "Phosphorus Derivatives of Fatty Acids." The Eastern Regional Research Laboratory is a Laboratory of the Eastern Utilization Research and Development Division, Agricultural Research Service, U.S. Department of Agriculture.